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Abstract. Ensuring the safety of vulnerable road users through accurate
prediction of pedestrian crossing intention (PCI) plays a crucial role in
the context of autonomous and assisted driving. Analyzing the set of
observation video frames in ego-view has been widely used in most PCI
prediction methods to forecast the cross intent. However, they struggle
to capture the critical events related to pedestrian behaviour along the
temporal dimension due to the high redundancy of the video frames,
which results in the sub-optimal performance of PCI prediction. Our
research addresses the challenge by introducing a novel approach called
Temporal-contextual Event Learning (TCL). The TCL is composed of the
Temporal Merging Module (TMM), which aims to manage the redundancy
by clustering the observed video frames into multiple key temporal events.
Then, the Contextual Attention Block (CAB) is employed to adaptively
aggregate multiple event features along with visual and non-visual data.
By synthesizing the temporal feature extraction and contextual attention
on the key information across the critical events, TCL can learn expressive
representation for the PCI prediction. Extensive experiments are carried
out on three widely adopted datasets, including PIE, JAAD-beh, and
JAAD-all. The results show that TCL substantially surpasses the state-
of-the-art methods. Our code can be accessed at https://github.com/
dadaguailhb/TCL.

Keywords: Crossing Intent Prediction· Temporal Event Learning · Con-
textual Attention Mechanism.
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1 Introduction

In the rapidly advancing field of autonomous and assisted driving [11,14], the
paramount concern is human safety. Facilitating effective interactions between
vehicles and vulnerable road users is essential. Within this context, accurately
identifying pedestrian crossing intention (PCI) is especially vital. In reality,
pedestrian behavior is affected by various factors [26,7], such as traffic signs,
vehicle speeds, and the conduct of other traffic participants, making the accurate
prediction of pedestrian behavior a challenging task. Over the past few years,
a variety of RNN-based methods for PCI have been introduced, which analyze
both visual and non-visual input data, achieving improved performance in PCI
prediction [12,13,28,7]. Given that RNNs have a limited capacity to retain global
information, often leading to information loss when processing temporal data,
some works utilize transformer-based architectures to more effectively capture
long-range dependencies and enhance overall performance [14,32,30]. Although
RNN-based and transformer-based PCI prediction methods have achieved a
certain level of success, they typically extract features from all the observed video
frames to forecast a pedestrian’s intention to cross the road. [3,18]. This approach
leads to high redundancy since the adjacent frames often exhibit significant
similarity. The high redundancy of temporal sequence data makes the model
struggle to capture essential information, resulting in sub-optimal performance.

To deal with the challenges above, we propose a new network, called temporal-
contextual event learning (TCL), illustrated in Fig. 1, which differs from the prior
approaches like RNNs and transformer-based approaches that analyze the whole
observed video frames in PCI prediction. We first propose the Temporal Merging
Module (TMM), which employs event clustering to categorize the observed video
frames into multiple key events according to the behavior changes of pedestrians,
such as standing, walking, or turning around. Furthermore, we introduce a
contextual attention block (CAB) to explore the relation of multiple critical
events, aggregating the critical features at both the event level and the data level.
Finally, by leveraging the TMM and CAB, the critical features can be effectively
captured in the expressive representation learning of pedestrians, enhancing the
accuracy of PCI prediction. Our primary contributions in this work are:

– We first introduce the temporal merging module to effectively identify the
critical information by clustering the temporal frames into multiple critical
events.

– We then develop a contextual attention block to adaptively aggregate the
critical features from the key events along with visual and non-visual data.

– Conducting thorough studies on three prominent datasets, we illustrate that
the proposed TCL significantly surpasses existing state-of-the-art approaches.
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Previous

Fig. 1: TCL focuses on the critical events identification and adaptively critical
features extraction across the events for PCI prediction, contrasting the previous
methods that analyze the whole observed video frames.

2 Related Work

2.1 RNN-based Cross Intent Detection

Due to the strong capability of modeling temporal dependencies and relationships
between elements, RNN has been widely used for analyzing the video frame
sequence [20,16]. Bhattacharyya et al. [1] introduce RNNs to sequence 2D features,
thus integrating temporal data into the analysis. Kotseruba et al. [13] further
employ the attention mechanism [17] to refine these models, enabling a focused
analysis of key temporal and spatial details. Over time, the complexity and
variety of input features used in RNNs have significantly evolved to enhance
the performance of PCI prediction [13,19,28,29]. More non-visual features have
been incorporated into the PCI prediction model, such as pedestrian bounding
boxes with pose keypoints [13,6], traffic objects [29,12], and contextual segments
[28]. Ham et al. [8] propose CIPF, which utilizes eight different input modalities.
Yang et al. [27] utilize graph convolutional neural networks (GCN) to analyze
pedestrian poses and deploy RNN to examine temporal sequences. Additionally,
advancements in feature extraction technologies, such as C3D [13], have enabled
direct joint analysis of spatial and temporal aspects using video data.

2.2 Transformer-based Cross Intent Detection

RNNs or C3D, while effective in certain tasks, have a limited ability to retain
global information[31], typically remembering only the content from recent se-
quences, which leads to information loss when processing temporal data. In
contrast, vision transformer (ViT) architecture networks are capable of building
long-range dependencies between images, offering a clear overview of the global
context for video recognition. Recently, some ViT-based methods have been
introduced to improve the PCI prediction and obtained convincing results [14,15].
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Zhang et al. [30] introduce a transformer-based evidential prediction method
aimed at uncertainty-aware estimation of pedestrian intentions. Zhou et al. [32]
employ stacked transformer layers where each layer corresponds to a time step.
Nonetheless, although transformer-based models provide a robust overview of
the global context for video recognition, the high similarity between video frames
can lead to dispersed attention when the attention mechanism is applied to all
frames.

To address this limitation, we built upon video-ViT, using TMM to segment
the frame sequence into key events. Then, we applied the contextual attention
mechanism to aggregate the critical features adaptively. The proposed TCL can
significantly focus on the important information reflected in the data as noticeable
dynamic changes.

3 Methodology

3.1 Problem Definition

Considering a series of observed video frames{T1,T2, ..TT } where n is the number
of observed frames. The goal of cross-intent detection is to design a model
f : {T1,T2, ..TT } → R to predict the probability of the pedestrian’s action.

Due to the significant impact of dynamic environments on pedestrian mo-
tion [10], numerous explicit features are widely considered in research. These
features can be broadly categorized into visual data and non-visual data.

1) Visual data. The visual data, denoted as {I1, I2, . . . , IT }, mainly consists
of the i-th pedestrian’s local context image, which refers to a square zone delin-
eated by an expanded pedestrian bounding box ("bbox"), including both the
pedestrian and contextual elements such as ground, curb, crosswalks, etc.

2) Non-visual data. The Non-visual data, denoted as {I ′1, I ′2, . . . , I ′T }, include
the bounding box, pose keypoints of i-th pedestrian, and the traffic objects in
the scene which are described as the following.

Bounding Boxes: Represented by [x1, y1, x2, y2], the position coordinates of
a target pedestrian indicate that (x1, y1) are the top-left and (x2, y2) are the
bottom-right coordinates of the pedestrian’s bounding box.

Pose keypoints: The movements of target pedestrians by extracting pedestrian
pose keypoints. Following the previous studies [6,7,8], we apply a pre-trained
OpenPose model [2] to obtain body keypoints denoted as P = {p1i , p2i , . . . , pTi } for
pedestrian. Each keypoint P consists of a 36-dimensional vector, which includes
the 2D coordinates for 18 different pose joints.

Traffic objects: The traffic object refers to the features which can capture
specific aspects of the driving environment, including the Traffic Neighbor Feature
(ftn), the Traffic Light Feature (ftl), the Traffic Sign Feature (fts), the Crosswalk
Feature (fc), the Station Feature (fs) and the Ego Motion Feature (fe).

3.2 Network Structure

Fig. 2 illustrates the overall architecture of the proposed model, which comprises
three essential components: the feature encoder, the temporal merging module,
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Fig. 2: Overview of TCL. It consists of the Temporal Feature Encoder for visual
feature extraction, the Temporal Merging Module for frame clustering, and the
Contextual Attention Block for the temporal event feature fusion at both event
level and data level.

and the contextual attention block. The feature encoder consists of the temporal
feature encoder implemented by the Visual Encoder and the ActAware Encoder,
which aim to extract the visual and non-visual features, respectively. The temporal
merging module clusters the frame into multiple events to exploit the relation of
frames, making the model focus on the key dynamic changes in critical events.
The contextual attention block employs the attention mechanism to fuse the
contextual information and improve the temporal feature extraction at both the
event level and the data level.

3.3 Temporal Feature Encoder

The temporal feature encoder includes both the Visual Encoder and Non-visual
Encoder, namely the Actaware Encoder, which is combined with the Relation
Block. These encoders help the model learn the representation from the visual
and non-visual data, respectively. Then, the visual and non-visual features are
fed into the temporal merging modules.

Visual Encoder. A pre-trained video-ViT network was used as the Visual
Encoder to extract the visual feature [24]. Following previous studies, [4,9,24], the
local context images are resized into a resolution 224× 224. The ViT-B/16-based
model, pre-trained on Kinetics-400, is chosen as the backbone due to its high
efficiency and accuracy.

Non-Visual Encoder. The Non-Visual data, including the bounding box,
pose key points, and traffic objects, are the input of the Non-Visual Encoder
consisting of the Relation Block and ActAware Encoder.

1) Relation Block. With the Relation Block, the bounding box and each traffic
object feature were initially scaled to a uniform size using a corresponding Fully
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Connected (FC) layer. Subsequently, these features were concatenated together
with pose keypoints, resulting in the new feature fr ∈ RT×(d1×(n+1)+d2), where
T is the observed length, d1 is the embedding dimension of each traffic object, n
represents the number of categories for traffic object features and d2 represents
the dimension of pose keypoints.

2) ActAware Encoder. The ActAware Encoder is implemented based on
transformer architecture, which was originally introduced for the tasks in natural
language processing [25]. It receives the relation block’s output as input and
utilizes a transformer-based network with a specification similar to ViT-small
[24] to learn the representation of non-visual tokens relevant to pedestrian intent.
Finally, it yields the new feature vector of size fa ∈ RT×d, where T represents
the observed length and d represents the feature dimension at each time step.

3.4 Temporal Merging Module

After feature extraction by the Temporal Feature Encoder, we obtained visual
and non-visual features with a length of T. Subsequently, these T features will
be clustered utilizing the TMM.

Although video-ViT is a powerful global attention mechanism for the long
series of action predictions, it struggles to prioritize the critical information
across the observed frames. The high redundancy significantly hinders the PCI.
Therefore, we propose a temporal merging module (TMM) to deal with this
concern and make the model focus on the key events. It first categorizes the
observed frame into different events by employing a density peaks clustering
algorithm [5] based on k-nearest neighbors. Clustering is performed on both
visual and non-visual data. Here we take the clustering on visual features as an
example, starting with the T time-step features I = {It}Tt=1 derived from the
Visual Encoder, we initially compute the local density ρt for each It based on its
K-nearest neighbors, which is formulated as:

ρt = exp
(
− 1

K

∑
Ik∈KNN(It,I)

∥Ik − It∥2
)
, (1)

where KNN(It, I) represents the K-nearest neighbors(excluding itself) of It in I.
We also need to calculate δt of It representing the shortest distance from point
It to any other point that has higher density, which are defined as follows:

δt =

 min
m:ρm>ρt

∥Im − It∥2, if∃m s.t. ρm > ρt.

max
m

∥Im − It∥2, otherwise.
(2)

The center of each cluster is selected from points with relatively high ρt and
high δt. Then we allocate other points to their closest cluster center and obtain the
clusters E = {E1, E2, . . . , EM}, representing the multiple events, where M denotes
the number of events. Ultimately, the non-visual events E′ = {E′

1, E
′
2, . . . , E

′
M}

can be obtained using the same principles.
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3.5 Contextual Attention Block (CAB)

After obtaining the visual and non-visual event features, we need to fuse the
features between events and integrate the features from the visual and non-visual
branches using the CAB.

In order to make the model focus on the critical feature after temporal feature
extraction, we further employ the CAB to adaptively aggregate across event
features, which selectively emphasizes specific aspects of features. Contextual
attention is applied on both the event level and the data level. Here, we still take
the visual feature E = {E1, E2, . . . , EM} as an example, the attention weights
for each event is defined as follows:

αi =
exp(score(Ei, Ej))

M∑
j=1

exp(score(Ej , Ei))

, (3)

where score(Ei, Ej) = Ei
⊤W1

cEj represents similarity between evener Ei

and Ej , W1
c is a trainable weight matrix. Combined with the weighted sum of

features from all preceding time steps, denoted as Ep. It is noted that the same
principles are applied to non-visual features. The aggregated features of all events
Ep are the new features of the events.

F = tanh(W1
p[Ep;EM ]), Ep =

∑
m

αmEm, (4)

where W1
p is the trainable parameters mapping the representation into a new

space.
Apart from utilizing the attention mechanism at the data level by adaptively

fusing the features from the visual and non-visual branches. Then, we obtain the
overall visual and non-visual event features, denoted as F and F ′, respectively.
Correspondingly, the attention weight of both features is calculated as follows:

λ1 =
exp(score(F ′, F ))

exp(score(F ′, F )) + exp(score(F ′, F ′))
, (5)

λ2 =
exp(score(F ′, F ′))

exp(score(F ′, F )) + exp(score(F ′, F ′))
, (6)

where score(F ′, F ) = F ′⊤W2
cF with the trainable matrix W2

c . The ultimate
integration of visual and non-visual features Fp is computed as:

Fp = λ1F + λ2F
′, (7)

where W2
p is a trainable matrix. The aggregated features are subsequently

processed by a fully connected (FC) layer to predict the intention to cross.

P = Sigmoid(W2
p[Fp;F

′]), (8)

where P = {p1, p2, ..., pN} is the output of the model representing predicted
probabilities of crossing.
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Table 1: Comparison of properties between PIE, and JAAD Datasets

PIE [20] JAAD [21]
Number of annotated frames 293K 75K
Number of pedestrians 1.8K 2.8K
Number of pedestrians with behavior annotation 1.8K 686
Number of pedestrians bboxes 740K 391K
Average pedestrian track length 401 140
Ego-vehicle sensor information yes no

3.6 Loss Function

we employ binary cross-entropy loss in our PCI prediction task to quantify the
discrepancy between the actual labels and the predicted probabilities.

L = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)], (9)

where N denotes the sample size, yi represents the ground truth label of the i-th
sample, and pi represents the predicted likelihood that the i-th sample belongs
to the positive class.

4 Experiments

In this part, the proposed TCL method for predicting pedestrian crossing intent is
evaluated for its effectiveness by conducting experiments that compare it against
leading state-of-the-art methods.

4.1 Datasets and Experimental settings

Datasets. Following the previous studies [28,29], evaluation of the proposed
model and competing methods is conducted on the two large public naturalistic
traffic video datasets, Pedestrian Intent Estimation (PIE) [20] and Joint Attention
in Autonomous Driving (JAAD) [21]. The PIE dataset, comprising six hours
of driving footage captured by an onboard camera, includes 1,842 pedestrians
annotated with 2-D bounding boxes and behavioural tags at 30Hz. Ego-vehicle
velocity was obtained using gyroscope measurements collected by the camera.
The JAAD dataset comprises two subsets: JAAD Behavioral Data (JAAD-beh)
and JAAD All Data (JAAD-all). JAAD-beh includes 495 samples of pedestrians
crossing and 191 samples of pedestrians intending to cross., while JAAD-all
encompasses an extra 2,100 samples of pedestrians performing non-crossing
actions. Please refer to Tab. 1 for further details on dataset statistics.
Competing Methods. To verify the performance of TCL, we compared it
against state-of-the-art PCI prediction models. MultiRNN [1] utilizes distinct
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RNN streams to independently process each feature type. SingleRNN [12] identi-
fies key visual factors, including crosswalk location and pedestrian orientation,
and integrates them into a single RNN model. SF-GRU [23] utilizes stacked
GRUs to receive the hidden states from the GRUs in the lower layers as their
input. PCPA [13] utilizes a C3D network to capture local context images and
employs GRUs to analyze critical elements like poses. CAPformer [14] employs
two distinct transformer-based encoders to extract features from video sequences
and other modalities, respectively. The Coupling Intent and Action (Coupling)[29]
model utilizes stacked GRUs to handle temporal sequences, incorporating both
current actions and predictive outcomes to enhance pedestrian crossing prediction.
The Predicting model [28] extracts features from pedestrian context images and
utilizes Hybrid fusion to integrate features from the two branches effectively.
MCIP [7] categorizes five inputs, including a segmentation map, into visual
and non-visual modules, utilizing an attention mechanism to discern crossing
intentions. PIT [32] considered local pedestrian, the global environment, and the
movement of ego-vehicle simultaneously. Hybrid-Group [3] introduces a novel
hybrid fusion method and incorporates two additional dynamic attributes. TREP
[30] proposed an innovative transformer-based model to capture temporal corre-
lations and address uncertainty. PFRN [18] develops a novel RNN architecture
that combines spatial and temporal feature fusion.

Evaluation Metric. PCI is essentially a binary classification problem, deter-
mining whether a pedestrian will cross or not based on the observed frames.
We employ several metrics for evaluation, including accuracy, Area Under the
Curve (AUC), F1 score, precision, and recall, which are widely recognized and
commonly employed in related research [22,28,13,29].

Implementation Detail. TCL is implemented in Pytorch 1.11.1 with Python
3.8. In TCL we utilized a resized 224 × 224 resolution as the input image size
for the video-ViT backbone, which was initially pre-trained on Kinetics-400 [24].
In the Relation Block, the embedding dimension of each traffic object is 32.
Besides, we employ the ActAware Encoder, a transformer-based network, to
process non-visual information. This network is designed with an embedding
dimension of 384, 6 attention heads, and 12 layers in depth.

Following the previous studies, for each target pedestrian, we sample obser-
vation data, ensuring that the final observed frame is captured within a 1 to
2-second interval (or 30 to 60 frames) before the commencement of the crossing
event, as specified in the dataset’s annotations. For all models, the number of
observation frames is 16. Sample overlap ratios are determined to be 0.6 for the
PIE and JAAD datasets. Considering the training samples, which span approxi-
mately 0.5 seconds, the number of clusters is set as M = 3 and used KNN for
the event merging process. All models were trained with the RMSProp optimizer
with a learning rate of 10−5, and L2 regularization with λ = 1× 10−3.

The TCL model, comprising approximately 100 million parameters, was
trained on the JAAD-all dataset using a cluster of eight NVIDIA 1080 Ti GPUs,
setting the batch size to 2. Each training epoch took approximately 12 minutes,
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Table 2: The experiment results on the JAAD-beh dataset. Each metric’s top
score is emphasized in boldface, while the runner-up results are underlined.

Methods Encoder AUC ACC F1 Prec Rec
MultiRNN(2018) [1] VGG + LSTM 0.50 – 0.74 – –
SingleRNN(2020) [12] VGG + GRU 0.52 0.59 0.71 0.64 0.80
PCPA(2021) [13] C3D + GRU 0.50 0.58 0.71 – –
CAPformer(2021) [14] Transformer 0.55 – 0.74 – –
Predicting(2022) [28] VGG + GRU 0.54 0.62 0.74 0.65 0.85
MCIP(2022) [7] VGG + GRU 0.55 0.64 0.78 – –
Hybrid-Group(2024) [3] VGG + GRU 0.61 0.67 0.79 – –
TCL (Ours) Transformer 0.61 0.74 0.85 0.75 0.98

while inference on the JAAD-all validation set required around 2 minutes per
epoch.

4.2 Comparison with the state-of-the-art methods

The experimental results for JAAD-beh, JAAD-all, and PIE are shown in Tab. 2,
Tab. 3, and Tab. 4, respectively. We evaluated TCL’s performance by contrasting
it with some other benchmark models for PCI, where different models are utilized
as their encoder.

As shown in Tab. 2, TCL demonstrates exceptional performance on the
JAAD-beh dataset, achieving a very high recall value of 0.98 and the best overall
accuracy (ACC) of 0.74 when compared with other baseline models. It is worth
highlighting that higher recall values are crucial for ensuring safety in autonomous
driving. Given that JAAD-beh is particularly focused on pedestrians with the
intent of crossing the road, where they exhibit more significant behavioral changes,
with the TMM, the division of pedestrian postures and contextual information
into distinct events becomes more manageable, enabling TCL to capture these
variations more effectively. In this way, TCL can focus on crucial information
among a myriad of redundant data, enabling accurate predictions of pedestrian
intentions. Similar results can be found in Tab. 3. On the JAAD-all dataset, TCL
achieves top-tier performance with an AUC of 0.92 and competitive accuracy.
Moreover, it attains the highest F1 score of 0.71, reflecting a balanced trade-
off between Precision and Recall—both at 0.68 and 0.74, respectively. This
is primarily due to TCL’s increased focus on critical events, underscoring the
essential role of TMM in TCL.

As shown in Tab. 4, TCL outperforms the most competing models on the PIE
dataset, yielding the highest AUC (0.88), F1 score (0.92), and Recall (0.96). The
main reason is that, by merging key events, TCL can capture critical information
without causing attention dispersion. These results indicate the effectiveness of
TCL in identifying PCI accurately while minimizing false negatives, which is
crucial for safety in autonomous driving applications.
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Table 3: The experiment results on the JAAD-all dataset. Each metric’s top score
is emphasized in boldface, while the runner-up results are underlined.

Methods Encoder AUC ACC F1 Prec Rec
MultiRNN(2018) [1] VGG + LSTM 0.79 – 0.58 – –
SingleRNN(2020) [12] VGG + GRU 0.76 0.79 0.54 0.44 0.71
PCPA(2021) [13] C3D + GRU 0.86 0.85 0.68 – –
Coupling(2021) [29] VGG + GRU 0.92 0.87 0.70 0.66 0.74
CAPformer(2021) [14] Transformer 0.70 – 0.51 – –
Predicting(2022) [28] VGG + GRU 0.82 0.83 0.63 0.51 0.81
MCIP(2022) [7] VGG + GRU 0.84 0.88 0.66 – –
PIT(2023) [32] Transformer 0.89 0.87 0.67 0.58 0.80
TREP(2023) [30] Transformer 0.86 0.88 0.61 0.70 0.54
TCL (Ours) Transformer 0.92 0.87 0.71 0.68 0.74

Table 4: The experiment results on the PIE dataset. Each metric’s top score is
emphasized in boldface, while the runner-up results are underlined.

Methods Encoder AUC ACC F1 Prec Rec
MultiRNN(2018) [1] VGG + LSTM 0.80 0.83 0.71 0.69 0.73
SingleRNN(2020) [12] VGG + GRU 0.64 0.76 0.45 0.63 0.36
SF-GRU(2020) [23] VGG + GRU 0.83 0.84 0.72 0.66 0.80
PCPA(2021) [13] C3D + GRU 0.86 0.87 0.77 – –
Coupling(2021) [29] VGG + GRU 0.88 0.84 0.90 0.96 0.84
CAPformer(2021) [14] Transformer 0.85 – 0.78 – –
MCIP(2022) [7] VGG + GRU 0.87 0.89 0.81 – –
PFRN(2024) [18] VGG + GRU 0.85 0.90 0.77 0.81 0.74
TCL(Ours) Transformer 0.88 0.87 0.92 0.89 0.96

4.3 Ablation Study

In this section, we analyze the efficiency of the essential components, including
non-visual input features, TMM, and CAB within TCL on the PIE dataset.
Specifically, we sequentially disabled each module, while maintaining the other
two modules active, resulting in three reduced TCL configurations (i.e.without
non-visual input features, without TMM, and without CAB). This allows the
isolation and evaluation of each module’s individual contribution to the overall
system performance. We report the performance of these three TCL variants in
comparison with the default TCL model in Tab. 5.

It is evident that the inclusion of non-visual input features significantly
enhances detection performance across all metrics, as demonstrated by the
substantially improved performance of the TCL model and its variants that
leverage these features compared to the variants without them. The integration
of non-visual input features into the TMM and CAB modules results in a notable
improvement in the overall performance of the default TCL framework compared
to its two variants, which also include non-visual inputs. This confirms that
dynamic environmental changes have a significant impact on pedestrians’ motion.
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Table 5: Ablation studies on the proposed model using the PIE dataset evaluate
the impact of non-visual input features, TMM, and CAB. Each metric’s top score
is emphasized in boldface, while the runner-up results are underlined.

NV TMM CAB AUC ACC F1 Precision Recall
✓ ✓ 0.80 0.84 0.90 0.88 0.93

✓ ✓ 0.86 0.85 0.91 0.88 0.93
✓ ✓ 0.84 0.85 0.91 0.86 0.97
✓ ✓ ✓ 0.88 0.87 0.92 0.89 0.96

2 3 4 5
M

0.86

0.88

0.90

0.92

0.94

0.96

Sc
or

e

AUC
ACC
F1
Prec
Recall

Fig. 3: Performance of TCL w.r.t the cluster number M in TMM.

Additionally, in the CAB, we initially allocate attention to different events
and then adaptively aggregate the event feature along with visual and non-
visual data. This allows TCL to further focus on the key features that are
most crucial for aligning intentions during these dynamic changes. Besides, in
the TMM, event clustering ensures that the distinctions between events are
significantly greater than those between individual frames. The pronounced
variation in pedestrian posture and environmental information enables TCL to
avoid attention dispersion due to data redundancy, allowing it to focus more
effectively on the dynamic changes related to pedestrians’ action. Using the
TMM alone achieves the highest recall at 0.97, showcasing TMM’s proficiency in
detecting samples where pedestrians intend to cross.

4.4 Effectiveness of the Cluster Number

To analyze the impact of the number of clusters M on TCL’s performance, we
evaluate TCL’s performance by varying M from 2 to 5 and report the results in
Fig. 3 across all the metrics above. For all metrics except for precision, TCL’s
performance initially displays an increasing trend, achieving peak performance
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when M is set to 3, and then declines. Although TCL yields higher precision
when M is set to 2, the recall is significantly lower than when M is set to 3,
resulting in less optimal overall performance. Therefore, for this task, setting
M to 3 enables the TMM to segment events most effectively, leading to the
best overall performance. On the other hand, setting M higher than necessary
may also hinder the effectiveness of TCL, as indicated by the declining trend.
This is because, within a relatively short time frame, increasing the number of
events diminishes their distinctiveness, making critical event identification less
meaningful and resulting in a sharp decline in performance.

5 Conclusion

In this paper, we introduce a new PCI method named TCL, which synthesizes
temporal feature extraction and contextual attention to merge both visual and
non-visual temporal features for PCI. The proposed TCL is implemented by the
TMM and the CAB. The TMM merges temporal features into limited key events,
and the CAB employs the attention mechanism to fuse contextual features at
both the event level and the data level. This allows the TCL to focus on critical
dynamic changes, which is important for PCI. Extensive experiments demonstrate
the superiority of our TCL compared to state-of-the-art approaches across several
datasets. Specifically, the proposed TCL achieves the highest recall values, i.e.,
0.96 and 0.98 on the PIE and JAAD-beh datasets, respectively. Overall, this
research establishes a new benchmark in pedestrian crossing prediction and
contributes to the advancement of autonomous driving systems, promoting safer
and more reliable navigation.

While the TCL model holds promise for future applications like vehicle
behavior prediction, its performance is contingent upon the quality and diversity
of the training data. This can be a significant obstacle in real-world settings. To
address this, future research should explore expanding the model’s robustness
by considering incorporating pedestrian trajectory information and domain
adaptation capabilities and by testing more datasets under different environmental
conditions.
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